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Abstract. We describe a Bayesian method for detecting structural changes in a long-
range dependent process. In particular, we focus on changes in the long-range dependence
parameter, d, and changes in the process level, l. Markov chain Monte Carlo (MCMC)
methods are used to estimate the posterior probability and size of a change at time t, along
with other model parameters. A time-dependent Kalman filter approach is used to
evaluate the likelihood of the fractionally integrated ARMA model characterizing the
long-range dependence. The method allows for multiple change points and can be
extended to the long-memory stochastic volatility case. We apply the method to three
examples, to investigate a change in persistence of the yearly Nile River minima, to
investigate structural changes in the series of durations between intraday trades of IBM
stock on the New York Stock Exchange, and to detect structural breaks in daily stock
returns for the Coca Cola Company during the 1990s.
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1. INTRODUCTION

Stationary processes exhibiting long-term, persistent fluctuations have been
observed in many areas, including hydrology, meteorology, economics, finance
and telecommunications. A commonly used model for such processes is the
autoregressive fractionally integrated moving-average (ARFIMA) model,
introduced by Granger and Joyeux (1980) and Hosking (1981). Accurate
estimation of an ARFIMA model often requires a large sample of data taken
over a long period of time which, in turn, increases the chance of structural breaks
in the process. A structural break may be caused by a change in the physical
mechanism that generates the data or by a change in the way that observations are
collected over time.

Due to the slowly decaying correlation structure of an ARFIMA process, test
statistics commonly used for assessing the stability of the model over time may
encounter some difficulties. Kuan and Hsu (1998) show that, although the least-
squares estimator of a change-point in mean is consistent for detecting a change if
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one exists, it is likely to suggest a spurious change if there is no such change.
Wright (1998) shows that the usual sup-Wald and CUSUM tests for structural
stability with unknown potential break date falsely indicate a break almost surely
when applied to a polynomial regression model with long-range dependent errors.
Even structural change tests designed specifically for ARFIMA data with known
potential break date may still have large size distortions in small samples (Hidalgo
and Robinson, 1996). Beran and Terrin (1996) derive a test that can be used to
detect a single change in one of the parameters of an ARFIMA model, but their
method is not applicable for detecting a change in mean. Furthermore, most
commonly used tests are designed to detect a single change point, although for a
long series, several structural breaks may be present.

McCulloch and Tsay (1993) give a Bayesian method for estimating random
level and variance shifts in an autoregressive (AR) time series. Their method is
based on estimating the probability and size of a shift at each time point, together
with other model parameters, using Markov-chain Monte-Carlo (MCMC)
techniques. Although only changes in level and variance are discussed in their
paper, the method is broadly applicable. For example, it can be used to test for a
change in other model parameters, such as an AR parameter. In this paper, we
extend the method of McCulloch and Tsay (1993) to detect changes in the
parameters of an ARFIMA process. We concentrate on detecting changes in the
long memory parameter, d, and in the mean, l, although as stated above,
the method can be used to detect changes in any model parameter. The method is
likelihood-based and can detect multiple change points.

The remainder of the paper is organized as follows. Section 2 outlines the
method and discusses its implementation. Section 3 presents the results of a small
simulation study. Section 4 applies the method to the series of yearly minima of the
Nile river to investigate the stability of the long-range dependent parameter, and to
two financial series, the duration between trades of IBM stock on the New York
Stock Exchange and the absolute returns on Coca Cola stock, to investigate the
presence of level shifts and/or changes in persistence. Section 5 discusses the
relation of the method presented here to that of other authors. Section 6 concludes.

2. DESCRIPTION OF METHOD

Let fytg be a long-range dependent process with mean l. We model fytg as an
ARFIMAðp; d; qÞ process

yt ¼ l þ ð1 � h1B� . . .� hqBqÞ
ð1 � /1B� . . .� /pB

pÞ ð1 � BÞ�dat ð1Þ

where at is a Gaussian white noise process with variance r2
a and B denotes the

backshift operator. The d parameter is a real value governing the amount of
persistence in the process. The process is stationary and invertible if all roots of
ð1 � /1z� � � � � /pz

pÞ and ð1 � h1B� � � � � hqBqÞ lie outside the unit circle and
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�0:5 < d < 0:5. We assume that the AR and moving-average (MA) polynomials
have no common factors. The process is long-range dependent when 0 < d < 0:5.
An ARFIMA process has an infinite-order MA representation of the form

yt ¼ l þ at þ
X1
i¼1

wiðd;U;HÞat�i ð2Þ

where wiðd;U;HÞ signifies the dependence of the ith MA coefficient on the d and
ARMA parameters. See Beran (1994) for additional discussion of ARFIMA
models. In this paper, we focus only on stationary long-range dependent models.

2.1. Random persistence-shift ARFIMA model

Assume the amount of persistence in the process changes over time as
dt; 0 < dt < 0:5, where the size and time of the shifts in d are unknown. The
process may still be expressed in terms of an infinite-order MA representation of
the form

yt ¼ l þ at þ
X1
i¼1

wiðdt;U;HÞat�i ð3Þ

where the sequence of wi is now different for each different value of d.
Given that we do not know a priori the time period or size of a shift in d, we

model the process allowing for shifts in d of random size at random time periods.
In particular, the process fytg is said to follow a random persistence-shift (RPS)
ARFIMA model if d is allowed to change randomly over time as

dt ¼ d0 þ
Xt

j¼1

djbj ¼ dt�1 þ dtbt;

where the dt are independent and identically distributed Bernoulli random
variables such that P ðdt ¼ 1Þ ¼ �, and fbtg is a sequence of random observations
from a known distribution. In this framework, the number of shifts in d is
governed by the probability � of the Bernoulli trials. Wang et al. (2001) give some
examples of processes for which the self-similar behaviour, as characterized by d,
might change as the phenomenon evolves. For instance, they find that vertical
ocean shear measurements tend to exhibit locally long-range dependent behaviour
that changes as a function of ocean depth. Whereas Wang et al. (2001) analyse
such processes using a semi-parametric wavelet-based approach applied to series
blocks, the RPS-ARFIMA model gives a way of formally quantifying both the
probability and size of the change at a particular time.

We estimate the parameters of the RPS model in the Bayesian framework,
using a Gibbs sampler approach. This entails the derivation of conditional
posterior distributions for each of the process parameters. For convenience, we
assume that the model of interest contains no ARMA components, i.e., we work
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with the RPS fractional noise model, IðdtÞ. Incorporation of ARMA components
is discussed at the end of this section.

Here are the prior distributions used:

• mk
r2
a

 v2ðmÞ

• � 
 Betaðc1; c2Þ
• l 
 Nðl0; r

2
0Þ

• d0 and bj are uniformly distributed over the set of real values such that
0 < dt < 0:5 for all t.

Here, m, k, c1, c2, l0, and r0 are specified hyperparameters. The distributions for
r2
a, � and l are chosen because they are standard conjugate priors. In the absence

of any prior information about the dt, we assume uniform distributions for d0 and
bj; j ¼ 1; . . . ; t to ensure that each dt satisfies the stationary, long-memory
constraint. Choice of hyperparameters is discussed in the next section.

Using standard Bayesian techniques, we obtain the following conditional
posterior distributions for a series of length n:

• pðr2
ajY ; fdtg; fbtg; d0; l; �Þ 
 inverted v2; i.e., ½mk þ s2=r2

a 
 v2ðm þ nÞ, where
s2 ¼

Pn
t¼1 a

2
t and Y ¼ ðy1; . . . ; ynÞ

• pðljY ; fdtg; fbtg; d0; r2
a; �Þ 
 Nðl�; r2

�Þ, where

l� ¼ r2
0

Pn
t¼1

ztct�1 þ l0r
2
a

G
;

r2
� ¼

r2
ar

2
0

G

and

G ¼ r2
0

Xn
t¼1

c2
t�1 þ r2

a

where

cj ¼ 1 �
Xj

i¼1

wicj�i;

and

zt ¼ yt �
Xt�1

j¼1

wjat�j:

• pð�jY ; l; fdtg; fbtg; d0; r2
aÞ 
 Betaðc1 þ k; c2 þ n� kÞ, where k denotes the

number of dj that are equal to 1.
• The conditional distribution of dj is given by

pðdj ¼ 1jY ; dð�jÞ; fbtg; d0; l; �; r
2
aÞ ¼

�P ðY jdj ¼ 1Þ
�P ðY jdj ¼ 1Þ þ ð1 � �ÞPðY jdj ¼ 0Þ ;
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where P ðY j�Þ denotes the likelihood of Y given all parameters and fdð�jÞg denotes
the fdtg process excluding dj.

Both d0 and bj have non-standard conditional posteriors. We use a ‘griddy’ Gibbs
procedure to sample values of these parameters. Specifically, to draw d0, we
evaluate P ðY jd0; r2

a; fdtg; fbtg; l; �Þ over a grid of d0 values uniformly spaced over
a subset of the region ð0:0; 0:5Þ such that 0 < dt < 0:5 for all t. The value of d0 is
selected from a multinomial distribution with multinomial weights based on the
likelihood values PðY jd0; r2

a; fdtg; fbtg; l; �Þ. When dj ¼ 1, values of bj are selected
similarly, although care is required to find the appropriate region of possible bj
values such that 0 < dt < 0:5 for all t. When dj ¼ 0, bj is drawn from a uniform
distribution on the appropriate region of possible bj values.

The likelihood P ðY j�Þ is evaluated using a time-dependent Kalman filter
approach. We use a truncated MA approximation to the ARFIMA likelihood, as
discussed by Chan and Palma (1998), with the state-equation matrix modified to
allow for changing d. The changes in d are reflected in changes to the MA
coefficients. See theAppendix for a state-space representationof the time-dependent
ARFIMA model. Using this approach, evaluation of the likelihood is very fast,
making the Gibbs sampler approach feasible in practice. Chan and Palma (1998)
find that, using a relatively small truncation value, M , for example, M ¼ 10 when
n ¼ 1000, results in accurate parameter estimates for standard ARFIMA models.

ARMA components can easily be accommodated in the current scheme. In this
case, the wi coefficients in the truncated MA representation of the model are
computed as a function of the ðdt;U;HÞ from the relation

WtðBÞ ¼
ð1 � h1B� . . .� hqBqÞ
ð1 � /1B� . . .� /pB

pÞ ð1 � BÞ�dt

To enforce stationarity and invertibility conditions, the AR and MA parameters
can be reparameterized in terms of partial autocorrelation coefficients with
uniform priors over the region ð�1; 1Þ. In this case, the ARMA parameters will
have non-standard posterior distributions and can be sampled using, for example,
a Metropolis-Hastings algorithm or the ‘griddy’ Gibbs method. Chib and
Greenberg (1994), Marriott et al. (1996), and Barnett et al. (1997) all discuss
various MCMC estimation schemes for ARMA models, while Pai and
Ravishanker (1998) and Hsu and Breidt (1999) discuss MCMC estimation of an
ARFIMA model with non-zero ARMA terms in the constant d case.

2.2. Random level-shift ARFIMA model

Recent work by Granger and Hyung (1999) indicates that undetected level shifts
in a time series may spuriously indicate the presence of long-range dependence,
similar to the result that a large mean shift can lead to over-differencing in
ARIMA modelling. On the other hand, a typical stationary long-range dependent
series exhibits features such as apparent local trends and/or cycles and a level that
seems to change over time. Because of this typical behaviour, it may be difficult to
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distinguish between level shifts and persistence subjectively. However, by
explicitly accounting for level shifts in the ARFIMA model, we can estimate
the probability and size of a shift at a particular point, together with the other
ARFIMA model parameters. A random level-shift (RLS) ARFIMA model
satisfies

yt ¼ lt þ at þ
X1
i¼1

wiðd;U;HÞat�i ð4Þ

where lt ¼ lt�1 þ dtbt, analogous to the random-level shift AR (RLAR) model of
Chen and Tiao (1990) and McCulloch and Tsay (1993).

Implementation of the Gibbs sampler for estimating the parameters of a RLS-
ARFIMA model is the same as that for the RPS-model for r2

a, �, and fdtg. The
values of d are chosen using a Metropolis–Hastings algorithm with a Nð0; r2

dÞ
proposal. Rejection sampling is used to enforce 0 < d < 0:5. A normal prior,
Nð0; r2

bÞ, is used to sample bj. If dj ¼ 0, yt contains no information on bj and a
new value is drawn from the prior. If dj ¼ 1, fytg contains information on bj for
all tPj. Let

at ¼ ðyt � l�
t Þ �

XM
j¼1

wjat�j;

where l�
t ¼ lt; t < j and l�

t ¼ lt � djbj; tPj: Then at 
 Nðct�jbj; r
2
aÞ, where

c0¼ 1;

cj¼ 1 �
Xminðj;MÞ

i¼1

wicj�i; j > 0

The conditional posterior distribution of bj is normal with mean b�
j and variance

r2
j given by

b�
j ¼

r2
bG

r2
a þ r2

bD
and r2

j ¼
r2

br
2
a

r2
a þ r2

bD
:

Here,

G ¼
Xn
t¼j

ct�jat and D ¼
Xn
t¼j

c2
t�j:

This is a standard result for a conjugate normal posterior.

2.3. Implementation issues

Implementation of the Gibbs sampler requires choice of the hyperparameters
specifying the prior distributions. Here, we used c1 ¼ 1; c2 ¼ 20 in the prior for �.
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This choice places most of the mass of � on small values, indicating that we do not
expect the value of dðl) to jump too often. In the RLS model, we then let r2

b be a
multiple (e.g., 3.0) of some initial estimate of r2

a. We set k ¼ 0:5, m ¼ 1 to give a
diffuse prior on r2

a. Values of l0 and r2
0 were also chosen to give a diffuse prior on

l, for example, l0 ¼ 0, r2
0 ¼ 3r̂r2

a. The variance of the Gaussian proposal for d in
the RLS model was set to a small value, 0:001 in our examples. See McCulloch
and Tsay (1993) for a more detailed discussion on choice of hyperparameters in
similar models.

In the RPS model, we used a grid of 20 values to select d0 and bj using
the griddy Gibbs procedure. Ten steps of the Hastings algorithm were used
within each Gibbs iteration to sample values of d for the RLS-ARFIMA
model. The method of Raftery and Lewis (1992) was used to find the
minimum burn-in, N 0, and the number of iterations, N , required to esti-
mate the posterior cumulative distribution function of the 0:025 and 0:975
quantiles of the parameters to within �0:01 with probability 0:95. The
sampler was run for N iterations, with only the last N � N0 iterations used for
analysis.

Initial values for d0; r2
a, and l were obtained using standard maximum

likelihood estimation for a fixed parameter ARFIMA model. Initial values for
fdtg and fbtg were obtained by sampling from their respective priors. We let
� ¼ 0:05 initially, giving little prior weight to a parameter change.

Due to the inherent long-range correlation properties of the ARFIMA
model, a reasonable number of observations is needed to obtain adequate
parameter estimates. In our implementation, we allowed shifts only at time
periods t ¼ bþ 1; 2bþ 1; . . . ; n� bþ 1, where b denotes a block size. Thus if
dbþ1 ¼ 1, d0 in the RPS-ARFIMA model is estimated using only the first b
observations. In the RLS-ARFIMA model, we set l̂l ¼ �xx initially and allowed
an additional shift at t ¼ 1. If there is no mean change, this provides an
accurate initial estimate of l. If a mean change exists, then d1 ¼ 1 with high
probability and b1 gives an estimate of the initial mean based on the first b
observations.

Note that a shift occurring in the middle of a block will be detected at the
closest block end points, unless the shift persists less than b time periods. In other
words, our method will be unable to detect single or short runs of additive
outliers, but can detect long-lasting or permanent shifts in process structure.
Other methods, such as the sup-Wald test, are also unable to detect temporary
changes. We investigate the effect of different block sizes on estimation results in
the next section.

Bayes factors can be used in our framework, for instance to compare a model
that allows d to change and a model having constant d, or to compare the RPS-
ARFIMA model to the RLS-ARFIMA model for a given data set. The Bayes
factor for model Mr relative to model Ms is defined as

Brs ¼
mðY jMrÞ
mðY jMsÞ

ð5Þ

693CHANGE-POINT DETECTION IN LRD PROCESSES

� Blackwell Publishers Ltd 2002



where mðY jMrÞ is the marginal likelihood of model Mr and

mðY jMrÞ ¼
Z

f ðY jMr;XÞpðXÞdX; ð6Þ

where X denotes the vector of parameters for model Mr. Kass and Raftery (1995)
review different methods for computing the marginal likelihood under many
different types of model formulations and discuss interpretation of the computed
Bayes factor value. In our framework, we use the harmonic mean of the likelihood
values evaluated over a subset of the sampled parameter values as an estimate of
the marginal likelihood for each model.

3. SIMULATION RESULTS

As a check on our method, we applied it to some simulated examples in which the
presence and size of structural breaks were known.

3.1. RPS-ARFIMA

We conducted a simulation study using series containing two shifts in d. We
generated 50 series of length n ¼ 1000 from a mean-zero I(dtÞ process having
dt ¼ 0:10; 1 O t < 330; dt ¼ 0:40; 330 O t < 585; dt ¼ 0:25; 585 O t < 1000. The
series were generated using a truncated MA of Gaussian white noise variables
with MA coefficients as in (3). Each series was initially generated using r2

a ¼ 1:0.
The series was then rescaled to have sample variance 1.0. We estimated the
parameters of a RPS-ARFIMA model using block size b ¼ 20; 50; 100. Table I
gives the average posterior means and standard deviations of ĥh ¼ ðl̂l; d̂d0; r̂r2

a; �̂�Þ for
each block size over the 50 replications, while Figures 1 and 2 show the average
posterior mean of d and the average estimated probability of a change over time.

From Table 1, we see that l and d0 are accurately estimated no matter the block
size, while the posterior mean of � is larger on average than the prior mean of 0:05.
Figure 1 shows that the general trend in d is captured quite well. However, from
Figure 2, the estimated probability of a change is at most around 0.60 at t ¼ 300

TABLE I

Means and Standard Deviations (in parentheses) of Estimated Parameters

over 50 Replications of an IðdtÞ Process of Length n ¼ 1000 with

d0 ¼ dt ¼ 0:10; 1O t < 330; dt ¼ 0:40; 330O t < 585; dt ¼ 0:25; 585O tO 1000

b l d0 r2
a �

20 0.0265 (0.1401) 0.1469 (0.0602) 0.7646 (0.1395) 0.1431(0.0602)
50 0.0295 (0.1454) 0.1309 (0.0543) 0.7857 (0.1227) 0.1104 (0.0385)

100 0.0307 (0.1512) 0.1329 (0.0567) 0.7789 (0.1279) 0.1019 (0.0310)
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when b ¼ 100, corresponding to the change from d ¼ 0:10 to d ¼ 0:40 at t ¼ 330.
As the changes in d do not occur at block end points in this example, the
estimated probability of a change may be diffused across several block end points.
To investigate further, we conducted another small simulation study using only
ten series in which P ðAt [ AtþbÞ was computed for t ¼ bþ 1; 2bþ 1; n� 2bþ 1,
where At denotes the event a change point is detected at time t. If a change in d
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Figure 1. Average estimated posterior mean of d over time for 50 simulated IðdtÞ processes; solid line
indicates true value of d, while dashed lines indicate estimated d using block sizes b ¼ 20 (circles),

b ¼ 50 (triangles), and b ¼ 100 (squares).
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Figure 2. Average estimated probability of change in d at block end points for 50 replicated IðdtÞ
processes; vertical lines indicate true change points, while dashed lines indicate estimated probability of

change using block sizes b ¼ 20 (circles), b ¼ 50 (triangles), and b ¼ 100 (squares).
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occurs at some time t0 between t and t þ b, we expect to find evidence of that
change at time t, time t þ b, or possibly both. We found that, for both b ¼ 20 and
b ¼ 50, the indicated probability of change around the break points increased
from about 0.35 to about 0.50. This suggests that our method can be reliably used
to detect both the sizes and approximate times of changes in d. To more precisely
estimate the point of change, the MCMC algorithm could be run for a second
time, with change points only allowed at a subset of time periods selected based
on the initial results.

To check that our method does not find spurious changes in d, we simulated a
single realization of a zero-mean Gaussian Ið0:4Þ process of length n ¼ 1000
having white noise variance r2

a ¼ 1:0 using the method discussed in Hosking
(1984). The algorithm was implemented exactly as in the previous example using
b ¼ 50. A posterior mean of 0:4690 was obtained for d0, comparable to the
estimate of 0:4407 obtained using Splus. The largest estimated posterior
probability for dt ¼ 1 was 0.0133 at t ¼ 51, with corresponding mean
bj ¼ �0:0193.

3.2. RLS-ARFIMA

To validate the method for detecting level shifts, we conducted a simulation study
involving 100 replicated Gaussian Ið0:40Þ series of length n ¼ 500 having a mean
shift from zero to 2.77 at t ¼ 211. We set white noise variance, r2

a, to
Cð1 � dÞ2=Cð1 � 2dÞ ¼ 0:4381, resulting in process variance r2

y ¼ 1:0, so that
the size of the mean shift was almost 3r2

y . Table II gives the average posterior
means of d̂d, r̂r2

a and �̂� over the 100 replications for b ¼ 20; 50; 100. The presence of
a mean shift does not seem to adversely affect the estimation of d. The average
value of � increased to about 0.13 from its initial value 0.05. A mean shift of
average size 2.28 was detected at t ¼ 200 with probability 1.0 when b ¼ 100. The
maximum average probability of a mean shift at other allowed time periods was
0.23, with average size only 0.37. A mean shift at t ¼ 200 was indicated with
average probability 0.98 and average size 2.00 when b ¼ 50, while a mean shift at
t ¼ 250 was indicated with average probability 0.35 and average size 0.70. The
maximum average probability at other allowed time periods was less than 0.15.
When b ¼ 20, a mean shift was indicated with average probability close to 0.60 at

TABLE II

Means and Standard Deviations (in parentheses) of Estimated

Parameters over 100 Replications of an Ið0:4Þ Model of Length

n ¼ 500 with lt ¼ 0:0; 1 O t < 211;lt ¼ 2:7; 211O tO 500

b d r2
a �

20 0.3757 (0.0351) 0.6994 (0.0854) 0.1127 (0.0200)
50 0.3897 (0.0335) 0.7106 (0.0853) 0.1358 (0.0204)

100 0.3966 (0.0339) 0.7167 (0.0849) 0.1339 (0.0170)
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both t ¼ 200 and t ¼ 220 with average size approximately 1.3 in each case. This is
reasonable, as the change actually occurs in the middle of the block, at time
t ¼ 211. A change in level is indicated at other time periods with probability less
than 0.10. Note that, in their RLAR model, McCulloch and Tsay (1993) estimate
bt at every time period, i.e., b ¼ 1. This is not computationally feasible for the
ARFIMA model.

To verify that our method does not find spurious changes in l, we applied it to
100 replications of a zero-mean Gaussian Ið0:4Þ process of length n ¼ 500.
Table III shows the estimated d0; r2

a, and � parameters, along with the number of
times (out of 100) that the maximum estimated probability of a change was
greater than p, where p ¼ 0:50; 0:60; 0:70; 0:80; 0:90. We see that using blocks of
size b ¼ 100 minimizes the chance of finding spurious level changes, while results
of the previous simulation show that this is sufficient to detect a change if one
exists. When b ¼ 20 or b ¼ 50, there is about a 17% chance of spuriously
detecting a level change using p ¼ 0:6 as the cut-off. The value 0.60 was the
estimated average probability of a change at the time periods bracketing the true
change in the previous example when b ¼ 20. When b ¼ 50, the previous
simulation results indicate that a larger cut-off could be used, giving smaller
chance of spuriously detecting a mean shift. The simulations of Wright (1998)
indicate that when a CUSUM or sup-Wald test is applied to a long-range
dependent process having d ¼ 0:40, a spurious mean change is indicated in about
90% of cases. In our simulations, the average size of the shift detected at the time
period having maximum probability of a shift ranged from 0.85 to 1.00 across
different probability thresholds and different block sizes.

4. APPLICATIONS

4.1. Yearly minima of Nile river

The series of yearly minima of the Nile river has been extensively studied in
relation to long-range dependence, and has typically been found to have a

TABLE III

Means and Standard Deviations (in parentheses) of Estimated Parameters over 100

Replications of an Ið0:4Þ Process of Length n ¼ 500 with no Level Changes

Maximum probability of change

b d0 r2
a � p > 0:50 p > 0:60 p > 0:70 p > 0:80 p > 0:90

20 0.365
(0.038)

0.675
(0.077)

0.041
(0.024)

22 17 13 10 8

50 0.369
(0.036)

0.677
(0.076)

0.049
(0.024)

20 17 14 12 11

100 0.375
(0.035)

0.680
(0.074)

0.048
(0.017)

10 7 7 5 5
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long-range dependence parameter d between 0.35 and 0.40; see, for example,
Beran (1994). For the series of yearly Nile minima based on measurements near
Cairo for the years 622–1284 ad ðn ¼ 663Þ1, Beran and Terrin (1996) find evidence
of a change in the amount of long-range dependence around the year 722 ad, with
d̂d ¼ 0:04 for the first 100 years, and d̂d ¼ 0:38 thereafter. Various historical
studies – e.g. Balek (1977) – indicate that a new type of device was introduced for
taking measurements around the year 715 ad. A change in the measuring device
may be the source of the change in long-range dependent structure, although
Whitcher et al. (2002) attribute this change to a change in the underlying
measurement variability. Using the method of Section 2.1, we estimated the
probability of a shift in d for the sample-mean corrected series using b ¼ 20. A
change in d from 0.05 to 0.45 was indicated at year 722 ad with probability 1.0,
analogous to the results of Beran and Terrin (1996). Changes in d at other time
periods were indicated with probability less than 0.04.

In theory, to distinguish between changes in r2
a and changes in d, one could

allow both random persistence shifts and random variance shifts, discussed in
McCulloch and Tsay (1993). We hypothesize that very large amounts of data
would be required to distinguish these two possibilities using the Bayesian
method.

4.2. Trade durations for IBM stock

Our second example pertains to the series of durations between trades of IBM
stock on the NYSE from November 1990 to January 1991, a total of 63 trading
days (n ¼ 19022). Durations are measured in seconds and are time intervals
between two consecutive trades. There are no durations between trading days.
The durations distribution has a large positive skew, thus we analyse the
logarithm of durations.

As an initial step, we applied the spectral regression method of Geweke and
Porter-Hudak (1983) with m ¼ ½n:6 Fourier frequencies to estimate d for
moving blocks of size n ¼ 1000. We also computed the sample average of each
moving block. The estimated d values ranged from �0:02 to 0.66, while the
sample averages ranged from 2.5 to 4.1, suggesting that d; l, or both may
change over time. Given the large sample size, we focus on only one week of
durations at a time to determine whether a level or persistence shift occured
during that time frame. Figure 3 shows the logarithm of durations for days 48–
59, corresponding approximately to the second and third weeks of January
1991. A vertical line marks the beginning of day 55. The durations appear to
have changes in both level and persistence over the first period of n ¼ 2734
transactions, while they are relatively stable over the second period, consisting
of n ¼ 2316 transactions.

1The data were obtained from http://www.stat.cmu.edu/S/beran
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In any given day, two to three hundred durations are recorded. We analysed the
data using b ¼ 220, i.e. allowing approximately one shift per day. Figure 4 shows
the estimated values of dt and lt for both the RPS-ARFIMA and RLS-ARFIMA
models during the first period of interest. During this time, three major shifts in d
were indicated with probabilities 0.74, 0.45, and 0.79, respectively, when a RPS-
ARFIMA model with constant mean was fitted. When a RLS-ARFIMA model
with constant d was fitted, two major shifts in l were indicated, both with
probability one. The computed Bayes factor for the RLS-ARFIMA model
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Figure 3. Logarithm of time intervals between IBM stock trades for days 48–59 of the period
November 1990–January 1991; vertical line indicates start of day 55.
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Figure 4. Estimated d and l for the logarithm of time intervals between IBM stock trades for Days
48 through 54 of the period November 1990 through January 1991.
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relative to the RPS-ARFIMA model was estimated as 23.66 (on the log10 scale),
indicating decisively that changes in the structure of the durations process were
due to shifts in the level of the durations rather than shifts in the persistence of
durations. Changes in both d and l were indicated with very low probability
during the second set of days.

4.3. Returns on Coca Cola Stock

As a third example, we analysed the volatility of daily Coca Cola stock returns, as
measured by the absolute value of the actual returns, from 2 January 1990
through 3 December 1999 (n ¼ 2528). Recent empirical evidence indicates that,
although stock return levels have little predictability, variations in stock returns
exhibit persistent correlation over time (Lobato and Savin, 1997; Ray and Tsay,
2000). Other authors suggest that apparent long memory may actually be due to
unaccounted for changes in the levels of stock return volatilities (Granger and
Hyung, 1999; Diebold and Inoue, 2001). An analysis of the first 50 sample
autocorrelations of the absolute returns showed that they were all positive and
decayed to zero slowly, indicating possible long-range dependent behaviour.
However, a time series plot of the data suggests that there may be structural
changes in the series. A standard I(d) model fit using approximate MLE methods
gave d̂d ¼ 0:143.

We first fit a RLS-ARFIMA model to the data allowing changes in l every 63
trading days, corresponding roughly to once a quarter. Columns 2–3 of Table IV
give the posterior means and standard deviations of the model parameters. An
estimated d value of 0.11 suggests weak persistence in volatility. The solid line in
the top plot of Figure 5 shows the estimated mean over time. The analysis
indicates a jump in the level of volatility early in 1997.

Fitting a RPS-ARFIMA model with constant mean gave posterior means and
standard deviations for model parameters shown in columns 4–5 of Table IV. The
solid line of the bottom plot of Figure 5 shows the estimated persistence over time.
The value of d decreased from its initial value of 0.168 to 0.12 and remained fairly
stable until early 1998. During the first quarter of 1998, the estimated value of
d jumped first to 0.181 with probability 0.40 and then to 0.42 in the late second

TABLE IV

Posterior Means and Standard Deviations of RLS-ARFIMA and RPS-ARFIMA Models for

Absolute Value of Daily Stock Returns for the Coca Cola Company using b ¼ 63

RLS-ARFIMA RPS-ARFIMA RLS-ARFIMA (DC) RPS-ARFIMA (MC)

Mean Std dev. Mean Std dev. Mean Std dev. Mean Std dev.

l – – 1.175 0.036 – – – –
d0 0.112 0.016 0.168 0.061 – – 0.130 0.044
r2
a 1.014 0.020 1.025 0.020 1.017 0.020 1.004 0.084

� 0.052 0.028 0.149 0.077 0.049 0.030 0.021 0.049
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quarter, with probability 0.77. The value of d decreased sharply, to 0.14 with
probability 1.0, at the end of the third quarter and remained stable throughout
1999.

It is possible that the changes in persistence indicated by the fitted RPS-
ARFIMA model may actually be due to changes in level or vice versa. To
investigate further, we fit a RLS-ARFIMA model in which the long-range
dependence parameter was not updated, but specified to take values dt according
to the previously estimated RPS-ARFIMA model. Posterior means and standard
deviations of estimated model parameters are given in columns 6–7 of Table IV,
while the dotted line in the top plot of Figure 5 shows the estimated mean over
time. A jump in the level of volatility is still indicated, even after allowance for
changing levels of persistence. We next used the estimated mean process from the
fitted RLS-ARFIMA model to mean-correct the absolute returns and fit a RPS-
ARFIMA model to the mean-corrected data. Posterior means and standard
deviations of estimated model parameters are given in columns 8–9 of Table IV,
while the dotted line in the bottom plot of Figure 5 shows the estimated d
parameter over time. The estimated d value is a little more stable over time than
when the mean is held fixed, but there is still a significant jump and subsequent
decrease in persistence during 1998. Taken together with the previous results, the
analysis suggests that the level of volatility in the returns of Coca Cola stock
increased after 1998 and the long-run predictability decreased. Historical data
show that the price of Coca Cola stock experienced a significant drop in the
second quarter of 1997, but recovered to reach a new high in the second quarter of
1998. The price dropped even more dramatically at the end of the second quarter
of 1998, from about $85 to about $55 per share, and has not fully recovered ever
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Figure 5. Top plot: estimated mean over time for RLS-ARFIMA model of Coke return volatilities:
the solid line denotes the estimates when d is held fixed; the dotted line denotes the estimates when
ð1 � BÞdt is used to prefilter the data. Bottom plot: estimated d over time for RPS-ARFIMA models
of Coke return volatilities: the solid line denotes the estimates when l is held fixed; the dotted line

denotes the estimates when the data is corrected for a changing mean.
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since. Various reasons ranging from global economic slowdown to company
specific problems caused the price to fluctuate, leading to the appointment of a
new CEO in the beginning of year 2000. These big price changes may account for
the structural changes detected by the proposed method.

5. RELATION TO OTHER WORK

Liu and Kao (1999) also use a Bayesian framework to identify multiple changes of
the long-memory parameter in an ARFIMA model. Their method requires that
an upper bound on the number of changes in d is determined in advance. They
then apply the reversible jump MCMC technique to obtain posterior distributions
for the number of changes, the times of occurrence of the changes, and the values
of d at each change point. They also allow the random errors in the ARFIMA
model to have changing conditional variance, which they parameterize using a
GARCH(1,1) model. The ARFIMA likelihood is approximated using the
truncated AR representation of the model and d is allowed to range over the
interval (0,1). In their examples, the maximum number of allowed change points,
k, is kept small, for example, k ¼ 3. In contrast, our method does not a priori
restrict the number of possible change points. Additionally, our use of a truncated
MA representation for likelihood evaluation provides a more accurate
approximation, as the MA coefficients decay more rapidly than the AR
coefficients (Chan and Palma, 1998).

Chib (1998) uses a Bayesian MCMC method to estimate a multiple change-
point model in the general setting. His method requires a prior specification of the
number of change points, but allows the probability of a change to be non-
constant.

6. DISCUSSION

We have shown how the Bayesian methodology of McCulloch and Tsay (1993)
can be extended in a natural way to allow estimation of the probability of
parameter changes in an ARFIMA model. In fact, the method may be easily
applied to any time series model having a linear state–space representation. The
state–space framework also allows for straightforward extension of the methods
of Section 2 to the long-memory stochastic volatility (LMSV) framework,
discussed in Breidt et al. (1998). Specifically, the distribution of the disturbance
terms �t in the LMSV model can be approximated using a mixture Gaussian
distribution. See Hsu and Breidt (2001) for details concerning MCMC estimation
of an LMSV model in the constant d case.

Although not considered in this paper, the method of appending a probit model
to the ARFIMA model to estimate the probability and size of a shift given a set of
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explanatory variables can also be implemented in a manner analogous to that of
McCulloch and Tsay (1993). We note that, as for the method of Beran and Terrin
(1996) for detecting a change in d, model misspecification may result in failure to
detect structural changes. The issue of ARFIMA model selection in the presence
of structural breaks is a subject for future research.

APPENDIX

Let y0t ¼ yt � l be a zero mean IðdtÞ process, where

dt ¼ d0 þ
Xt

j¼1

djbj ¼ dt�1 þ dtbt:

For d fixed, y0t has an infinite MA representation with MA coefficients that depend on d,
i.e.,

y0t ¼ at þ
X1
i¼1

wiðdÞat�i:

Following Chan and Palma (1998), we approximate y0t as an MAðMÞ process, where M is
chosen dependent on the length of the modelled series, and write the MA model in a state–
space representation. The only difference for the RPS-ARIMA model is that the

coefficients of the MA representation change over time as d changes. A state–space
representation that incorporates these changes is obtained as

~XX tþ1¼ F ~XX t þ T tþ1
~ZZtþ1 ð7Þ

y0t¼ G~XX t ð8Þ

where ~XX t is a vector of length ðM þ 1Þ having ith element

X t;i ¼
XMþ1

k¼i

wk�1ðdtÞG~ZZtþi�k

Here, G ¼ ½1; 0; . . . ; 0 has length ðM þ 1Þ, ~ZZ 0
t ¼ ½at; . . . ; at�M , F i;j ¼ ½diþ1;jMþ1

i;j¼1 and

T tþ1 ¼

1 D1ðbtþ1dtþ1Þ � � � DM ðbtþ1dtþ1Þ
w1ðdtþ1Þ D2ðbtþ1dtþ1Þ � � � 0

..

. . .
. ..

.

wM ðdtþ1Þ 0 � � � 0

2
6664

3
7775 ð9Þ

where Diðbtþ1dtþ1Þ ¼ wiðdtþ1Þ � wiðdtÞ.
For given l; d0; r2

a; fdtg and fbtg, the Gaussian log-likelihood function of yt is
given by

�0:5 lnð2pÞ þ
Xn
i¼1

lnðstÞ þ
Xn
i¼1

ðyt � y0tÞ
st

ð10Þ

where st and y0t are evaluated using standard Kalman recursion equations; see, for example,
(Brockwell and Davis, 1987, ch. 12). To start the recursions, values of ~XX 1, the mean of the
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process, and ~RR1, the covariance matrix of the process, are needed. For the RPS-ARFIMA
model, the filter is initialized by letting ~XX 1 ¼ l and computing ~rr1 ¼ EðX 1XT

1 Þ � Eð~XX 1
~XX

T

1 Þ
assuming d ¼ d0.
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